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Spherical lmplosions Driven by
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ABSTRACT

The incrtial confincment approa;h to controlled fusion requires that
small thin walled spherical shells of fuel and other materials bie imploded,
cowprcsscd.and heated by laser or chargeh particle beams. In most cascs
of interest the implosion of such thin shells is unstable to the growth of
spherical asymmetrie#.

We have developed and used two numerical simulation techniques to
study these instabilities. The first technique is used to study the snall
amplitude growth of the instabilities hy employi;g a perturbaéiun method. The
derivation of the Hamiltonian model on which the teclinique is based is
de;eloped here. The second technique is a fully non linecar two dimensional
hydrrdynanics and heat flow technique (PAL) which we have used to follow
the large amplitude development and satuartion of the instabilities. The
examples of calculations shown demonstrate the utility of the method and

the range of different saturation pheaomena which may be expected,



J. I abuci 10

Th.e central fdea of inertfal confincient costralbad fusion Is that
nuclear fusion fuel ean be comprecaed aned heatoed to cconui.ieal burning
condiriuns by implusion of pellets containing the fucel, Tmplosion is caused
by ablatine nnrréln] from the surface of a pellet withh an external enerpy
input fron a fozusicd laser or charged ;artiele bea:, Ref. 1 explains in
pore detail thar symetric spherlecal ivplostons, witich ace vost effeetive
for producing cconomical burning coaditjons, arce rade nuch wore ef foctive
by the inclusion of thin layers of non fucl waterial, as vell as by making
the fuel part of a pellet a thin, hollow, spherieal shell.  Unfoctunately,
the performance of such thin shell systess can be greatly reduced by spherical
assynetries caused by assymetry of the oxterual Leatlng, or by Rayleigh-Taylor
type hydrodynumic instabllity caused by uaterlal acceloerat ion aad deasity
gradients. The magnitudes of these phenonena and the contribution of effects
vhich nitigate them, such as thermal coaduct Ion and details of deasity profiloes,
can be calculated for many cases of Interest from a partially 1invarized
numerical treatmeat of the hydrodynambcs and heat. flow equations which introduces
spherical assymetries as angle depindeni. perturbat.fons of an exact spherically
synctric treatment. This method, which is nore cconomleal than full muled--
dincnsion hydrodynamies, and consequently pernlts needed parcnacter studies
that would otherwlae be almost impossliblce, 16 described In section 1L, The
retiod presented here represents a wajor fmprovement over the carvlier
perturbation method used in Ref. 1. With the new methad, which in contrast
with that of Ref. ), is bascd entirely on a Hamlltouian Hodel, problem: can
now be run through collapsce ol an impolston to the eonter and at conniderably
Jeun cost.  Resulta of recent studies vith a code called PARSY using this

rethod vill be published claewhere (2).



In those cates Where acayietvic G athances prow to Lrge agplitades,
particutarly as a result of fost precing fnstabilities vho e vaveleagilin are
rerch less than the spherleel sbell circecforence.,, @ nalti diwen.ioanl
hrdrodyianies and heat flow muerical soethod is ueeded vhich s capable of
treat ing the highly distorted flows duvoelved in thens partivular probleis.
Scction T1I prosents a Particle-In-Cel! type method (3) developed for this
parpase, which containg wore of the feoteres and advantages of Losvancean
rethods than the earlier PIC nethods vhile retaining the advantazes of fixed
grids in handling distorted flows. 7The pethod is called PAL for PArticle

Legrangean. Section 111 concludes with an fnpor -ant sauple rosult obtained

uvith this nethod.



A Goperturbed Hodel

Tiie Raailtonian wadal Irogwm whieh the difference equations for
the linear stahility method are obtained consints of a ur-.'.;tf_-d st
of shells which in the absence of perterbatioans are concentric and
have rodii rj. radial velocities vrj and surface wasns densities, }j'
prr o stecradian. Therwadyaacic projpertien are delin~d, i.e., ccatered,
in a honogencous massless Tluid between zoanes.  These properties
include pressure and teaperature, P, and T,: P, and T, are in tha

J J 3] J

region hetween ‘-j—l and rj. The radial acceler :tions of the mass
are detersined dlirectly Ly the d:'feroﬁcou L teeen adjacent pressures.
The first and last points of the calculation ace rise polnts at T
and rjl?‘..'lx' the former being ab the origin, Lo, r, - 0, il there
is no void in the case and at the tice in question or at sanme 0 < r,
il there is. The heat low betveen the theceodynwric regions, !-‘j,
eneryy per steradian per second, thon passes through the mass surflaces
ol arve A, = lj’ and is defined thore. This desceiption of the
unperturbed systan Je siuply a one dinensloaa™, .=:phr'ri('.'|l.- Yacraantian
hydrodynamics and heat flow sches (Bef. 3).  The differentinl cguatious
of potion of this wodel are:

X see balow)
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Ve chose to average zone center the theroal conductivity, K, to zone
boundaricea. The choice of the radial iacreeent acrogs whtch the

temperature gradieat is deliacd io oq. (3) is the sinpl it approxicately



spatially centered form., 1t coul'l be improved Gt soiws cxpense i

complexity by averaging by voluwae instead of by lengih, 11u-|}'s

are used to advance the thermodynaic state variable, which is

specifiz entropy, sj, in our codc,

d 1 dQ. (¥, .-F
@ By 108G TWinFy)
de M, T, dt M.T.
3] ii
aad the Sj's in rurn are uscd Lo obtain the Pj's from an equat ion
of state
3?13
5) P, =P(s,, p,), whers p, = -ap——gc .

An analytic (Y law) entropy based procedurc is described below (near
eq. 82) for both zero and first order varinbles. If some other state
variable such as encigy or temperature werce used it vould also be

-

necessary to integrate an additional energy equation involving the
PdV/dt hydrodynanic work team, wherce V is zonce volume.

In this code second order accuracy in the time step dis obiained
in intepratlng these equations by the usie, both in the zero oxder
equations described here and in the {irst order cquations below, by
usitig a modification of the leap frog schewme in which, in uwnits of
the time step, At, thoe mass point or surface positions are Jeiined
at whole intepger times and their vclocirices at half odd integer
tines. UWe nzed to include some other dependent variables at halfl
and whole tlme (such as clectromagnatice ficld components when gpon-
taneous magnetic fields are traated later) and to have [irst order
accurate values at half (whole) times which are known to sccond

order only at whole (half) times. Consider then the vectors A, and

1

B, of dependent variables for cach space fandox j, which are to be

Lanoun to sccond order in At at hall aml vhole rimes respectively.

A and B contain alternate order time derivirives of vavious dopendent

variehbles Including r.  These variable vectors, vhich satisfy the



coutinuons tive diflercat izl cqnat ion,

aA. . f.j(f\,l'-)

62) a
di, g.(AL)
S B

6h) gt

are thea advanced through a full tine step, At, where t -2 nhit, by

diffcerence cquations of the fornm.

S ) . | . . .-
7a) AVELORTTR 4 Ae x FL(GAY, B
3 J T R
- 1. - —_— e -
76) B LB 4 A x B.GPLED)
3 I S D
. 1. —  ondl: — gl
8a) A‘j"'l = AR A x r, (At gty
2
RS PR
8b) ﬁ?+1 s B; + AL x g_(A"}‘,HnF‘)

where the superscripts indicate tirve and the subscripts are abseat
from the argﬂments of T and'E becavse the continuous form i- space
in uenern} involves spatial derivitives such as VP, and, therefore
the spatially differenced [orms ai Index § will conlain nou-local
values at lcast from j'l., While cqs. 7b and 8a are not tine centered
and ar¢, thercfore, only first order accurate in At, in all appli-
cations it 1s casily shown that the results are multiplied by another
factor of At before being added Lo a second order quantity and,
thecefore, second order accuracy in At is maintained.

B. Perturbation Treataent

The perturbation treatment consists of caleulating fFivst order
corrections, which depencd on all three dimvnﬂinnﬁ, i.e., on angle
variables as well as on vadlus, to all of the zero erder indepoendaat
variables, which depend only on radius. The fnclusion of the required
cont inuous depondence «n angle variables is eccompliszhed by using a
rnodel which 1s -ssentially a three dinensional lagringian treatment

of a spherical system In which the radial zone dimensfons veimein



finite while the angular (about the spherical veater) zone ditcensioes
go to zero. The angular dependeace therefore beeows. continuous, as
indicated in Fig. 3, which shous o cross section throesh the spherical
center, and the polnt dnertial nnasses at the zone boundary foter-

. . . th
soctions become continuous spherical o zero  order) nass shells,
Corresponding to the continuous angular zoailag, every point on the
wass shells has a three dimenslonal first order displaceasat, f,

which consists of a radial displaceieat, Lr. and two aagular displace-

rents, EQ = rQ};, and correspoading lirst order velocit ies, Vel ad Q. 7
Then the equation of motion of a point on the j"h mass shell, in teras
of the lincar and angular momenta, p_ aud T&P is
dp_. dr b
9 Pri_ . T1_ P
dt rj’ dt M.
J
dpo. A1, pg.
10 Py Tl
de Jai’ de M.
h
where f is the force on the muss, Hi, subtcadad by o sterradicn
on the wnperturbed mass shell at the 0 din questioa, and p oo o= MV,
. rJ - j rJ
D, = M.r, .. After espanding to first order in &, cquation (9
Poj i3 & AR o T )
contains a zero order part which is equivalent to egs. (1) and (2)
ahove and a first order part of the sawne form,
9a) Pry - Err _Pryj
dc rj’ dc M, °
J
Eq. (10) is only first order since we exclude m-mth order angular
mot.ions. 7To firsl ordor in'E, frl is
1la) £ = -8[A_ (P P )} -fA (e =P ) A (P ., -P )].
) L3 [ J ¢ 1,370 1,3 ] 137 0,341 o, “J( 1,041 I.J)]

. th . ., e
Here @) and ) subscriptes indicate zoere and first order quantitios
respectively, the prefix 6 indicates the first order part of vhat follows,

aad '\j is the arca of Lhat pact of the surface whizh sublends one



7 . .
sterradian on the uupertwbed s shell (A i : rj ). The ¢xecpticn
‘I

to the order notalion is £ whicl is purely lirst order med so dors
not carry a j subscript. Both Lr and LH contribute to the change:s

A. . in the swrlace area, Aj' of an clement of a mass shiell. 1t is

1]

caslly shown that A|j 5= Alr + Alﬂj = -
25, .. 75,
£ —— V. ] s nrmem fe e e ]
12) _A°j 4 “ﬂ Cﬂj Aoj F 1 3t J 5

vhere W2 is the gradlent wlith yespact te angle variable only, and,

therefore, that

e 2 |28 - - ) - —l
13) -[rx ) rj [__;__E.l. + 'af(_g" (Po.j'i': l'o.j) r (Pl.j'h p:.:i)l
SR J

The angular f{orce per stercadlian, }hl, has two qualitatively different

contrlbutions, l.e.,
T OLYE 4?2 -
11b) rﬂl - Iﬂl + ‘ﬂl'

'fh] can be thought of as the angular contribution [(ruia rotating fro
away from purely radial by any tip of the jlh mss surface, and
!fﬂl is caused by angular gradieats of the prussure.

It is clear from Fig. 1b that

1y ~fro %y
14) ' g e 7
N1 o %i
d = _ 2 p
vhere frn,j = rj (Pu.j+| ]o.j)'

A wvelighted sum of rQDl,jil values is applied Ln‘thc mass surface
along with Erl as Indlecated in Fig. 1b. These averaged thl forces
resulting from pressure gradients in the angular directlons are
transferred to the mass shells, whilch contain the inertial nass, by
the rigid, massless radiatl zoine boundary panels. This Is a consistent
madel in splte of the fact that the separatfon of these panels is

take: wo be vanishingly small,



Because of the sphevical geoetry, the comtribedion from .

given angular gradicent of r].j to “F 1.] is grecter thon to i WL

This can be derfved by integrat ‘g the toree into Jhe pase, Fiv. le,

on supports at LY and r, caused by a prewssure Poapplicd 1o a poanel

between two radii. The forces on supaorts al r, anld Y, Pur radi

J
in the plane are
Ty ra
> [ J] - _(h'_ -l.(.!.?. l'_) a: -l.- . ? . Py ?
15) l'] df[ (r?—ll) G [r, ll',lll .’ll l
r r)
. Plrs? 112 r .
16) F =Fga F " _.('E;'"'TL') S SRR P AEE PIRTRTLS

Then clecarly, since the force on a pancel per unit areae per uale
angle along the direction of the pressure gradicut is - ar/o, adding

forces at », from the panels between v, | and 1

j -1 It anl bhetveen l.i aud
rj+1 glves
or ar;,.
13 S SRR IS b4 B ROTE TR BT .1
17) fnl,j 6{ i lrj-rl-”j'l'lrj 2|j] ! = lhj TP 1t.

The aagular vector cquations cnn now be convertaed into scalar cquation:
by taking angular dlvergences, 1.c¢., by ovperating with -a:nn the vecior
equations. This, hovever, will not be possible when Lhiﬁe cquat ions are
generalized to include spontaneously generated magnetic [ields and off
diagonal viscous stress tensor elcerients. Then Instead, vector quantlit ies
(actually vector spherical harmonics instead of scalar spherleal

harmonics---sce below) must be euployed. Combining eqs. (10), (L1b),

(’4), and (17) and operating with -?: on both sides gives
(i) '



iy M ;"'H,i] g {[i- Vo i‘:(.- e -
| P ar ai! 2 .| [. ? ? |
- :. [ .. 3 | l] {l_illl _il; ] [ '11' ‘/rj -rjr..!__:- :-_: l}!

19) "' '”J] " (a"ati] i
J V.2

Yhe firat order by l'rodynanie syotee in cooplered by sebhat itutiog

(11) into eq. (9) ard! Jor this parpoee perierhed densdrdies, ".I. It

are neieded to obtaln the perturbed pressire,, l‘) " fron declvitives of
P.

the equation of state.  Suppasnc a spot on the rans shell ot r.i is

spall caough that (V 0 L‘) : a/.-'-- 0y ocan Lo taees as wifors eeers §is

turfave.  The clange In volue-, V) oof the e fon A0 forad b 1l apar,

the o ou the surcface al r

subt cndes? by the fonme vapert ustesgd

J-1

radli, and stralght lives counecet ing correspnnling wpertwibid points,

has cont ributions froam -F, and . amd _f,-. . and . o8
J--1 eyl Al

r,l

20) \']J h vh'.l 4 \’_m.i .

\'“ is the volume asvept out by the perturbed vat fon of the ead caps
and is
21) v

iy Mo Ay g

The \'Im contrihutlon is obtalned froa fategrating the pertuerhed

cross scctional areca, A) (scc eq. 12Y, of the volww clewent botween rass

surfaces. From A.lﬂ at an arbitrary radlus, r, between r _. ind rj,

J
r-r r,-r
22) A ™ A j rJ [i__:i_:e_.-."JI]"' Alﬂ.j—l [.'_J___r_.-_] r_".
. ]

j 31

integrating over r from rj__1 to rj fives



A A, . ]
= ]; ._.1.‘2!-1. 9. 2_ _ 2y ¢ .-J.ﬂ.' ]-1 ? +r r -7 2
23) Vlﬁj G s (.h.J LELT TR R YR ) i (rj F3T5-17 V541 )J .

Equations (21) and (23) can be simplifiad with the relatlonships betwecon

5]

the uaparturbed volumes and arcazs

24) ._°...1_ [ ___] and \, u .(_J_.-'!-‘;J 1_3—1), .l_\_

and with A.lﬂ,j o_| II ,_, From eq. (12).

Then the desired expression for plj becones

-p v
25) p].j = -0} 11

J&u_ [J] [ ey o1 |

@

'3°j_] [ £ -J]

Ll v.e rr ooy, ). E (e
te [‘Jvn .50 R Ty ) Tty Y

Spherical Harponle Expansion

At this polnt the flrst order hyd-adynamlc cquations can be
expandad in scalar spherical harmonics. This iy accomplished by
Lirst expanding all scaloav quantitics such as l'l, Ty “'1' (v 0 ‘p)

and (--E-)--'p_ ) in the form
o



Q) - ¥ I v,
26) PIJ() ’_'mlljﬁm hl( )

The Y may b~ thought of as ovitopormal over &% sterradians although

tn's

their normalization is nol fwportant here. The only additional praperty

wve require here is the idoeatity

2 9.9 Ty e —0(2: ;
27) \.QY (D) A Yo (($)) z(zl-l)vm(sz).

Yhen expansilons of the form of eq. (26) arwe substituted in all of the
cquations of motion and the auxlliary relations such as (25), and use

is made of cq. (27), Lt is scen that becausc of the orthogonality of

the Y!.m's the cquations smeparatce completely with resprct to £,

and chat the equations for a given 2 are independent of (i.e._, degenerate
with respect to) m. In particular, from eq. (27), the quantitlies
appenrinﬁ on the right side of the expansion of eq. (18) become

3 93 1
28) '.‘,,_,'}; P"Jl?.m . () = 9.(2.-I-1)Pljzm Y!'m(!f)

9, Y (!!)

on a?i

Y‘, Q) = !.(5'+1)l"

“ritm rid

From here on we suppress the subscerlpts £ and m on dependent variables.

1f for simplicity we make the deftnitlons

29) Aj p rlj HjF-,rj (using Aj for arca alsv should cause no trouble)
.1 _'Er
c =2 .=
;l ol "Ry
3 ..
R o B
.1 a4

then the equatlons of motion, which are combinations of equatinns

(9), (10), (13), (18), and (19), be onc

dA

0) ik = oy (“'J N "]( o147 1] [ Lk H]J



. dBI- A
M - ifl
J
dac r
—d .- . L3 -
32) dt £(£+1)rj (lo 1 o,j) 6 {l].j*l Jh 1 7rj )
2 o
1,373 T3y,
dD Cc
N R
33) dt Hjt‘

In addition an equation of state is requircd

3) Py 3" Ppg (84008

and the relationship (25) for p which now reads

1.3
35) p o ——322*11—— £,2B.-r? B +-L I} (7r } -r z) +
1,3 (rj -rj-:) b I T o L h| B L T
. 2
J . j (r -Irjrj zr ﬂ

Specidl Trcatment of the Origin

The orisin in £ = 1 calculations is n special case and nust
be treated in & special way. This fact, which may be intultlvely
obvious to readers who arc familiar with stability analysis, can
.bc understood in the following way, which brings iu some concepts
nceded in the mathematical treatmoent.

The oripin in our treatment of the spatial differcencing is n
. point wnass. ItlcOuld have been a point vhere thermodynanle varlables
arc centered inotead. Howevak, this would not flt in with prableaa
which start with a spherical void In the middle of a aystem and
colapse the Mrat nass sucface to a point vhen matecial Flvst

reaches the center, and we do such problems,  Then, since the



orlgiu is a point 1t can only hav : a single vector displacexent, -EI-
not a cont.inuous Cr(ﬁ) or 'F:n('ﬁ). That such a rigid .displact-izmnl of
the origin i only consiistent with an £ -- 1 perturbation is perhaps
obvious, but we proceed as if it veren't.

Consider now the change in volume of the counical n-.gion with
stralght sides between the orlgiu and the perlmeter of a small area, A;
on the first epherical or aluwst spherical wass surface outslde of
the origin, which is at mean radius ra. The volume, Vo'z. of this

repion (see Fig. 1d) is easily scen to be

A x

22
?6) vo.: 3 .

If the mass surface is kept fixed and the origin is displaced by &,

the change in volume is then secen to be

-AE. °T.
1) Vi@ w212
. 2 -
whero ?2 is dirccted to the centroid of A. If 1 Is a unit vector
in tha dlrcetion of Tys then we welte
—A £ G
2”1
38) vy 0D 3

The first order denmaity change caused by motion of the origin is then

—pD 2 V) '!(‘-i) "0‘2 ({:] 'ﬂ-)

398) pl 2(‘7) Bl mar mealn i et} & et g ——n
. von 2 r2

and the total p;,2, including contributions from Freat ovder
displaceunents at ra (sco eoq. 25) ls

00'2(5;']_'-9') :‘po.? rl’(vﬂ.%l' )]

4 ?, LR 4
39b) .m.z(ﬁ) M T TR T [l‘z (,l_.z(sz) b gt

The flrst order pressure is then

40) P12l = 1y [?,'p .

where the pressure derivitive, vhich ig of course a zero order quant Ly,



is calculated at the i = 2 zero ocler state conditicns from vhatever
cquation of stare is used.

Froa ecq. (40) and the addition theoresm for spherical harsonics
it can be seen that Pp1,2(2) can only consist of £ = 1 terms; which
Justifies treating the origin in this special way only for £ =1,

The theorem when applied to & = 1 states that if 0 is the angle

between $ and 5&1' then
+ - —
41) cos B = —4711 ¥ Yym{) Y m(R, ).
3 - &
w=-
1f ﬁ%' is the direction of €, then £,°Q = £, cos® and equation (41)

shows that the § dependence of €)°72, and therelore Py,2 from cq. (39),
has only the £ = 1 form.

In order to obtaln the time Jdependence of &), and therefore
P),2, we now nead an cquation of notion whlch gives the time dependence
of E, @ from P,;,2(), i.c., an equatfon of the form ddl_ €100y, ().
We start from eqs. (13), (14), and (17) for the forces on a mass
shell and take the limit that the radius of the shell o quastion,
j =1, goes to zero. If ft can bo assuned that rﬁr and rz{\ﬁff%g
tend to zero as r > 0, which is true for cases of interest, then
cq. (13) pives rrl x 0 for rj = 0. S8Similarly in eq. (l4), slince

> 0

) — - ae L
fro rc, if rlf,n *»*0 a5 ry 0, then tg‘] e

however, glves a non-zero contribution. For j = 1, the second term

iquation (1L7),

is zero because there is no Py, (which would by our spatfal centevlng
coaviention be inslde the origln). The first term gives,

— - - _"Z ’ 5’
'IZ) ?rﬂl I(ﬂ) EL] ‘6 . al‘_;"z_?( )
’ 5

The scalar product of the Intesral of this forcee over all angles

with the unlt vector § is
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1t caa be shown that for an arbiirary vector -\'S’ that lices in the
surface of a sphere of radius r, the sealar product of an arbitrary

uait vector, §1, with the integral, of this vector over the

\520‘
sphere is

44) QN = e Yin (52

20 3
ir Vp is such that
45) VQ'\I‘z o vim(S) .

I{ we assume Pl,z('ﬁ)~\’1m('f_i_\ for any particular m in Licu of cexpanding
in Y, 's, then since
2m
%6) lv . .E.).{'_L'?-(Ti_ ! N I ) 7(") =5(eE) P, 2 (). . -2p 12 ()
o Trgyn ox vz r2
) ¥ o ]

because £=1, we have from substituting eqs.” (44), (45) and (46)

into cq. (43),

47y T o - .r.zf.[.. ( "’(“)][”)l R

(remember this acte on all /nil:lJ » not just HJ).

If the mass per storradian of the wass shell bounding o central
void is N], then the wass of the origin mass polnt when this shell

is collapscd io 4uM, and the cquation of motion is

1

, -
48) ’nIM;‘:L{"-- 1,1

or
LI o - p L0
49) MMy ::t:p (S2+8)) 220y = - Ta. :J'-" (i) .

Substitutfng foto eq. (49) from eq. (A0) for Py, () plves

] atr e [0



In practice we solve this cequatlc by subsiitating into cq. (39)
for ph,(ﬁ) then into the ouation of state for Py, aad Lhen
substituting into eq. (H0). To be cousistent with cqu. (39) throush

{33) we set € = Dy = 0 aud define
Y
51) Ay =-qp 6))

Then

gy A1 [n?)
52) 4k (%in,) [ 9 ] Pi,2
dB) _
53) T Ay
Wheu th. wass shell bounding a central void collapsces to the
origin, then £ = 1 position perturbations, Cr and D, carcy sonme
average displacement which must then become the inltial value of E,
when the central mass point is forned. This average displacement
is given by
d 1 ot "-‘ Yo Xt 2 "11
e - " )
54) &, i frm ls,r.l(n ) "9.1“' )J
and the scalar product, (E;+8)), which is what we nced for eqs. (51)

through (53) is then,

:
na-L b le war
55) &1 = W §le [E,r” PR E’S!,; S!J

By dofinition of Er(ﬂ’), vhere we have set ﬁr ;(ﬁ) S n(ﬁ),
» = »
£

6) - QdTE (7)) T o~ Qddcy, @46
56) 4o {dn F‘r.,(“_) Qo {:m Y, @Hee |

for whatever m we are considerlup. The addition theorem, eq. (41),

and orthonormally of the Y's then give

f R - .. & . . '-I“ +l | 1 B ...]
N Y)) .1..11; inm s,r”(sz ) oSt }:" ‘&m ¥y, @) l'.,) Yq (6 )Ym,(uj
M=)
£
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Fro.a the definitions in cq. (29) aud the Jdiccussion albove we aave

58) vﬂ..f‘.!!.l B l,]Yh:nai)

Then {rom cq. (44) and (45)
s9) A faii’f,,(s—n e - By @,

where ) is the veid boundry radivs. CoebiInlns eqn. (55), @ 58) and

(59) gives

60) 'El-?i = = (Er'l+r1D1) r]m(n')

which is the deslred prescription for converting perturbations at
r; > 0 to a value of £)°1 for a central mn;s point. This 1is done
in th; computations at a point vwhen ry €€ r», r; s very near to 0,
and the time step criterion for equations (32) and (33) is Leconaing
prohibitive. At the same tiwe D) and C; for £ > L are sct to zcro.

Artificial Viscosity

It if necessary to introduce a viscosity to eucoicodate shock
waves ceven if the real plysical viscosliiy is insignificant. Of the
various possible forms of artificlal viscoslty, we have used only
those which give a diagonal and isotropic struss tensor, i.c., a
simple viscous pressure. In later treatwments of real viscosity,
however, off dlagonal tcerms will be included together with a voector
spherlcal harmonic treatment of perturbed qumtiticn. Winlle one
dinenslonal codes, like an zero order spherfcally syselric code,
can and do sometimes use forms fn; artifleial viscous presasare vhich
are not proper scalars in the tensor seonae, our need to generaltze
to more dimenslons to include [irst order asymetrle contelbut foas

leads us to use only proper scalar fores,  The forms we have used are



61) a) P = -p(¥ev)

B P -nl-n?

) P = —ui(VeY) . |
In nost uses these are turned on ouly vhen l‘v > 0 or when l'v( V'v) > 0
to avoid negative viscous heating. Note thint in an entropy bascd
schene even though there is no - PdV work term, vhere P is ‘the pressurc
fron the static equation of state, there is a - PvdV workk term vhich
generates entropy. The valuea of u, which ui:'-coursu have different
dicensions in different schcemes, are computed locally to damp
oscillations with a wavelength of the order the grid spacing on a
tioe scale of about an scoustic period for this wavelength. Longer
wavalengths are relallvely much less damped. In prictice we have
usually used n combination ol eqs. (6la) and (61b). The (6lc) scheme
has the advantage that it gives no artificial pressure in a reglun
of uniform compression, and is uscl in cases where high compressions
arc obtained and values of pR that are obtained are sensitive to the
form of Pv'

The diffoerencing of Pv' both Ia zero and f:'u:'sl- veder, is atraight-
forward, if a bit tedlous In sone cases, and will not be reproduced
here. The nﬁptoneh we have foll-wad, which Is in keeping with the
integral, or finite clement, approach of the rest of our modal, is

to 1y that (Vey) = .:'. :::l

for any cell volune.
It should he noted that when an on/ofF conditlon based on the
sign of P or v (V+V) Ls uied in the zero order code, then the Eirst

order viceous preasure must also be switeh on and of L at the sane

tinea.



First_(nder Heat Flow

The treatuent of first order heat flow also pracecds ﬂ& analogy
vith rultidizensional Jagrangian netkads,  We generalize froa the
ze.o ordoer equation (3). The heat flow throczh a zonce boundary of
arca A across which there ic a temperature differcic AT over a zone
center separation distance of Ar is

' —AEZE

When all variables are wri.ten as a sua of zcero and first order
terms, the result is multlplied out, and zero and first order . quations
are separated, cquation (62) becones, in zero order,

-A x AT

P o 20 O
63) ¥ Aro

which wvhen put in terms of radial indices 18 eq. 3 (above) and, in

first order,

6h) ¥, = MM (AL K1 il
! Ar Ao K AT  Ar
[o] [ ¢] (¢] [o]

In our system F; ha. two parts, the radial pact, P]r' and the azinuthal

part, Fin._for vhich eq. (64) becomes continuous, and vhich will be
. ' » .-’-. --‘-
trcated as the variable \n Elﬁ.

For Flr we substitute into eq. (64) dircctly. T, and K, are

obtained at rzone centcers from equation of stale information, and the
's arc avervaped to zone boundavies (sre cq. (3)). Ar]j is also

choscn in a way that is cousistont with eq. (3);
~£

65) Ar . - f_&:_r_d:“l'_"_‘r'!.-ﬁ. - S.tl'L'.FbJ:_l) ‘“,_ o _-|_—_1_’_ ]
13 2 2 5

These substitutions ince ¢g. (4) give, =ince A U
»
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where the first term in the [ ] brackets is Al j,Ao 5

66} Flr s x

Fbr'fln cq. (64) simplifies because ATo is zero. Going Lo continuous
dependance on 01 gives, where now }HQ is flux per wnlt area rather thaa
" flux per radian as in the case of Fr'

— -k
67) Fiq jvn'rl 5

or
—4£(£+1)K

o 2
e, " Ve T Ty, rjr'

68) V

Note that F is defined in radius at the thermodynanic polnt,

12,3
which wve have taken to be (rj+1 + rj)IZ, (cq.3).

The desired result from the heat flow calculatlion is t@c rate
of heat flow into a volume between zone boundiries which in the un-
perturbed state subtends a unit solid angle. We obtain for this
rate, ‘Fl’dt from a surface area integral of total Flux over this
volume

dQ. dQ dqQ
F = Fo F) = oF b dA T : )
o DS Sl s i df

The zero order terms reduce to the standard spherlcally symmetric form,

dQy,,
dc

) . 2, 2
70) - (AoJFor.J-Ao.j—lrbr.j—l) v (rj l.‘-'l'-j r J‘thr-J'l).

The first order terms arc

71) i:.:'_l. . _Uf dA o’ lﬂ + [I- d-.'\-ol_-'l.‘lr + -{Ix d;\jr.-i.'-"r]

where A is the arca of the spherlcal end cap on the jlh mass surface

3%

and An I is the area of the sides of the zone (which dlgappear in the
.l



cont inuous Tinit) betveon the j-1 qad _'|'ll surlaces.  The first tern

in cq. (71) ve approxinate as

[ - ("3_-;""3_1-1) o
y d1h a]" P U ot e e . o (¥ 2T
12) 91 Mg g V0V ) 3 (Vo )
J J J
by Gauss' theorem and assuaiag that Gﬂchkl) in wiform over the

voluie V,. The last tvo terms are treated as integrals over the end

J

cana. Talling A frow ca. (12) and substituting . (72) aloag with

ir
the end cap terms givos
dQ.. . (r®.-r?. )
P, = __F o1 .. 3_dY wooF - 2 -y
) Q5 3 Wiy = (g Fyy 577 5 Fap, )
[ 28, 2 . )
= or H r" ----E-' J- -I. D. == l“( rrz ._1 _-__r“l— + ]J-. —1 .
»J ] rj7_ J ) J L ‘-j_l a
TG 2 @ = 2 r _.“_.._'.n-\'_ = N - r .
Herce we have used Aj Zr,” and ——-"- & Dj (cq. 29) in eq. (12) for Alr

hsti ti 3 F V.°F B qelt &, é
Substituting for }or’ P]r and VQ }19 from eq (3), (66), and (6S)
into eq. (73) gives the desired difference cquation (which is too
bulky to be worth writing out here).

Other Sources oi Entropy

In addition to heat flow there are usually two other sources

of entropy input to a zonc in probleas of interest, the viscous work,

. dv
74) Ay = P oye
and lascr or charged particle bean energy absorption, 65’ which is a
source term usually given by trajectory integials of an absorption
co-efficient rhat may be a function of all state variables.

Bhen eq. (74) is lincarized it gives the standard zero-order

equation and
PV <|vl
2 P R TR 1 B

vhere, it will be recalled, Vi s (r13 - riil)/3. Both of these time



cderivat Ives of voluze alio occur iu the dittercue cxprecsion. for
P\-o and PVI as discussed below o, (0L).

1n princlple a wide variely of laser cod charpged particle boeaw
encrgy absorption schaiizs are possihle, so wide a variety thoal it
vould rot be reasonable to try to preseut he-e a first order treeatment
of absorption that would be gencral enough to cover al® of thea.
However, one prescription for lascr encrgy absorption is so conrnmon
that it will be discussed briefly here.

According to this prescription, to zerv order light impinges
on the spherleal target along radial rays and is absorbed at that
spherical surface on which the ﬂonsily, p. it equal to the critleal
density, Pc' (vhere the plasma [requency equals the laser frequency).
The zonc in which the energy is absorbed is then that zone whose
density is in some sensce closel Lo pc. Whea first order corrections
are consldered it is clear that densily perturbations do net chaage
the mans surfaces between which the ecnergy is deposited, That is,
there are no first order corrcctlons te the cnergy absorption rate,
65 in radlally adjacent zones as therce would be il
the absorption were a much weaker function of dewsity as it is in
charged particle beam systems. However, the cnergy absorbed per
unit mass in a zone increases or decreases as azlwmuthal perturbations
increase, 1.e., dialate;. or decrease the Su}fnce avca that the
particular part of thce surface of a zone prescents to the incident
rays. This ecorrection, which is proportional tov arca perturbatlion
is obtained from eq. (12) for A;.

There 1s a Lurthes livst order corrvection to 65 the assymetry

of incident irradlation, which [s uwaturally raken to be pruopartional
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to YS and ean be very itoortant ot b Lopeshers Corlining the
curface areda and aseyliaetry pertuslot ioas given

:'(_djldj__l) ‘e ’,

70) Q._ .- Q < 1 L
514, L0, J L 2 "-'J

tl . .
wviere Q _ Is the zero ' order source pouer in the j zone, q is a
50, - T

coastent firet order relative aofwe ey, and the d's, vhiieh are

defined on the wmaus su.faces and averaped to zone centers, are

relative first order surface aren dialations glven; from eq. (12) by

26 . 25, )
7)) d_. = | =l - -----]-.‘.J.. i Al + D
1] rj P rj jJ

resules. The poerturbaed energy from egos. (73). (75) and (76) are now

coxhined into a single torm,

78) Q, ,~Q FQ

. . .
1] ¥, Iv,j QJE-J

processes considernd. G course there is a parallel zero order

eqGuation [or Qo i We could now use tabular equation of state inform-

»
ation or ewmploy the followlng gamna law procedure.

First define a constant (arbitrary) reference value for the
density, Pyo viiich s usually taken to be 1(gw/cm®) for convenience,

and a corresponding quantity, P , with the dimensions of pressura,

R,

which is the pressure in the jth zone when p, = pR, and which is a

3

function of time as well an 6pace in non-incentropic situation: .

Then the gamoa law equation of state is

.')1 ¥

79) r . =P .|z

R R W

It will be recalled that the consteat Y is 5/3 for a fully Iuvnlzed

plasmr or monotonle gas, 7/5 for o diatouic gas, and 1 for any



isothernmal fluid.  Yor tone gamma

jth zorwe is

Lavw the Juternal encergy [or Lhe

V,n kT (r,? Hp (1472) M, (L2) kT,
. [ -.LJ__J. a ___1.__. _-_.__j_____ .1-_.___ - ].
80) By =GN A-Da, x kT, - 3F-m;

vherc }H is the (thermodynamic) mass of the zonc, k is the Boltzman

constant, m, is the mean lon mass, Z the mean foulzation state,

and "3 is the meon partlcele deanity. Also, of course, independent

of v,
- p, (1+2)
= = -—J———— N
81) Pj njij g klj

To calculate perturbed pressures we linecarlze eq. (79)

r

» by assuming
R, j 5= PRO,j '+ Pnl,j’ dilterentiate with respect to time and obtailn,
with the help of eq. (80) and (81),

dPRO . (y-1)Q

82) ALTH R L1 -
dt Y
(ry,3/P) Y5 oo
- p
. (y-1) lQ 4-Q [ 1(7—1)]
dr, »J To,ip :
83) .__:l‘.é.'.iu..__._.__._l_____ y o) 2.
FRCRILY
and the zero and fl st order tempueratures are
(y-1)
p p
[ .}.‘o_j _--'j .QJ_._:'._- _('_._'!
8h) To,j rb.' ] (]I;) k [ DR ]
85 T _P_Rn_._J_ + (y=-1) :.J
TR0, 4

This equation of sataLe procedure or ils tabular equlivalent

for less fdeallzed material propertiea, is {n fack entropy basod,

It avold: caleulating the hydrodynaaic work and the accumulation of

truncation errors In that usually lavge term.  Tn general it han the

ivlvantages of any nwewerleal schers which treats physleally connerved,

24



(or nearly or sometloes conservedd, quantities (here specific entropy)

in such a way that when they shiould be constaut they are really

constant. to round off.



ILL.  GHE PARITGLE LESRANGEAN (FAL) METIOD
For studylep aspects ol implosions which ave too distoried to
periit a perturbation treatpent, and in particular for studying the
non-linear saturation of the Rayleigh-Taylor Instabllity discussed
in Section II and Refs. 1, 2 and 5, a Particle-In-Cell type method

has been developed which is wore legrangean than the orlginal PIC

sacthod (ReE. 3). This method we call PAL for PArticle Legrangeari.

The PAL method has been incorporated in a two dimensional, cylindrically

symatric code called IRIS with a fixed rectangular grid in r and =z
and regular grid, i.e., cell, intervals (Ar, Az). tecall that PIC
(Ref. 3) defines the different hydredynamle variabloes on the fixed
grid the way the pure Euterian method does but also asseciates tha
mass with fixed mass particles. The particle masses are, however,
in general not all the game. The particles are wmoved with a velocity
which is interpolated to the pavticle positions from the cell
centers. The cell center velocity ir obtained by dlviding cell
momeatum by wmass. The mass in a cell (or zone) at a given time is
then nbtainch by adding the masses of the partieles in the cell at
that time. Momentum and enargy are transported betwean adjacent
cells durdng a given time step fn preportion to the fraction of
cell mass crosslug cell boundrices wvith the purrirléu.

The PAL mcthod atsoclates momentum and an internal therino-
dynawic variable, such as the specilie entropy used In IRIS, in
additlon to wass, with the partlelea.  In this respeet tha methed
yeseahles the “colllslouleas" PIC method developed for plasina
sinulat ton purposes (Rel. ). Howaever, uwnllke nearly colllslonless

plasias with thedr distribution of partiele veloeflles at any polat,

e ol B b
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fluids have o velocity 1ield vhich is a single valued funcLiuﬁ of
position. Therefore, cell center wonmeata and velocities are obtained
by swaaing partlele momenta, mud the partlcles are roved according

to interpolaled values of these cell velocltles as In standard

fluld P.I.L. Cell center eecelerat lons are caleulated from a sum

of forces on cell faces and from cell mass, .1 particle momanta

arce incremented durfug a time step by an Interpolatued distributing

of the correspondiug cell momentuﬁ change over the particles in a |
cell in proportion to their mass. In summary; the quantities defined
on cell centers and on particles arc given in the following lists.
Note duplication of those quantitles which are summed or Interpolated
between coells and particles.

Partlele Quntitlies: HMasg, m; monentum or velocity, v or F;

specific entropy, s.

Cell Quanititics: Mass, M; movenlina or vy]ucily.i; or V; entropy, S;
tenpoerature and pressure, T and P; acceleratlon, a.

It is c¢learly posslble C(or Indivicual particle veloclitles to accu-
mulate large departures frow the local nv;rnuc cell veloeltlios,

This has been limbted dn practice by applydng a small rate of dawmping
(i.c., smoothing) of particle velocities toward the local ccell
veloclty in a momentum cunuurvlng wvay. Huppily, Lt has not heen
found neceasary to use dawpiog rates that signlfLleantly modify
computed flown. The time ntepplog procedure used calcealates all
quantities at hall aad whole tine steps In oa way that Is sdmilar

to tvo atep Lax Wendrofl (Ref. 7) and glives scecond nrdur aceuracy

In the thw astep, At.  Thio procedure requires two paases through

the particle table for a piven tleves step, but this epeane is nore

than compensated for by the secoad order aecmaey In AL Special care
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has been taken In preseribing the details of the caleulal fon of

forces on vacuum interfaces, l.e., frev/eurfaces, Lo conserve anaend wn
and to aveid the &purious heating and aceceleration of cells In sueh
interfece reglons, which fs sonct fses obtained by PIC wethods.

Heat Ilow,.which In our physic:.1 applications Is by clectron
thermal conductlon (Refl. 8), 1u.rruulud lwplicitly in time for the
rcason that the thernal conductivity fs a strong fum tion of tow-
peraturc and in some parts of moat problems becomes very large.
‘These large conductivities would require am unacceptably mrall vilue
of At to obtailn stable forward differcnced solutiovns of the heat
flow cquation (Ref. 9). There arce several ways that the lanlfelt
formulation of the two dimensional heat flow cjuation can be solved.
The method we haver uwsed 1s called splitting (Rel. 10).  ‘thiz wethod,
which is particularly well sulted to regular cell prids, n[fréllvoly
decomposces a two dimenslonal ealculat lon Into two sets of orthogonal
one dimenslonal caleulatlons which ave casily doue by standacd
fuplleft methods.  Second erder accewacy In At is obtaloaed by por-
forming tvo nets of r and z 1d calewlatfons on cach tine atep (soe
Ref. 10).

Flg. 1 illustrates the way the TRTS coda haa been used to siudy
the problea of non-lLlnear developacat of Raylaigh-Taylor inscabllity
in Jeploding spherical uhuiln. Thﬂ.shnluh on the left showa o conleal
scct fon of the shell in [ta tulclal ponltlon (dashed 1lnen) and at
some termedtate tlue dn the iaploafon process. Ve ke the view
that up to thin tine the inltial perturbat fons on the matable
out s lde nurface have grown fron hﬂll!lﬂmpllludﬂﬂ to auplitudcen of
the order of the pertwbed mode vovelength on the nueface  and that

during this early perlod fnutable arovth o correctly deseribaed by



72)

the lisearized treatread Gihove) . Peosesor, wlm Lie e itable goele
moalitele beeo en uf_ the orde: ol tqe vavielespih, o fall aleg--
dirmnsirinl caleulativa i requine! o trect e Suhsoqueat o8 11
boeat s or other won ligear Laturation prazecses that oy eccur. Tor
this pitpate: the coenter axis of the cylindiical giid of the code is
placed on a radins o the spherleal yateig as indicated in Fig. 2,
anst o thin way a ool pilleshap - nection oL the fploding shell
is siualated. The outsid: surface of the peid 1s rigid but allowa
frea l'nua(-mi:!'l slip, ind the cnds ore rigid.  Sinee 1o pener. ?

the pust uustable shell distortloas pas. from uaderate non=linerity
Goplitude slTghtly less than wavelea=th) 1o 2hell brealeos or satur-
ation ai the shell woves only a feur tines s Yeosth, Convaqeeat 1y,
an will b H;'('II below, wien the she!l thlcknens 12 anch less thaa
fts epherieal radlus, the prid need not be extended so near the
oripin (Lo, so Far in 2) that ats eylhnlrical slhipe Is serfousty
in eonflict with the spherloal peaiotey of the Lplosica nysten,

Twa appaalte sanp?e cased are shova here, Jo the finnt,
Indleated in the upper right of Flpao 2, the shell in pushed Toward
by the pressure of o lower denslty, aad vsually Tower atonle nu:llh--r.
7, outer layer (reglon 2) of blowoff material (Ref. 1) vhich In a
buch hetter thermal conductor than the higher deasity fneer chel l,
hich dn this caae Is 10, (2 10), a favorlte Laser Tusbon shell
paterial, and Ie heated and ralned to o high pressuce from the outatde
by the taser o eharged partfele beans There g, however, no thereal
conduct ton In the ealeulat loy correspanding te the fact that econduet Lon
and ablation are not deportant dn thia type of anlosion,

The Interiace, \'Illlrh Poowsitaoble vade s these condil fog:, f5 perturbed

vith an ap? Trude 1778 ot dts vavetengthe A rode vlth vavelengsth
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aboat vgual to shell thiviines:s va chosen bocanse the eombinat ion
of higher growth rates at shorter vavelenzths and preater ability
to breali up the shell whea the vevelensth is louger i« generally
b-lieved to ake this the wst dongerous rode.  The dauleial §i0s
ehell density Is 2 gm/rm’ and thatr of th lower density plastic
blew of [ layer 2/3 gn/en’. For these caleulations a repular square
grid of 36 (in r) by 1/0 (in 2) zunes and 132,110, partlcles were
tuserd.  The lower right sketeh ia Fig. 2 1llustrates the second
case, uhich_iﬁ the same in other suespect: but has the lower denuity
blow off layer removed and itr effoect replaced by the pressure of
ditect ablatlon from the S0, shell, The Incldent laser lipht {1s
deposited at eritlcal density (laser frequency equalss plasma
frequency) of 0.2 gfem?. Thermal conductlon 1 dmporiant and is
ineleded here; incident laser pover in 10" 1/ cn? and tenperaturen
of about 2 keV ave reachsd In the eblated material.  Ablated waterial
reachlng the ends of the prid Is allowed to flow out frecely. To
comprusate for the removel of shell material by ablation the nhetl
raterfal wan nade dnltially twlee as thick, which 1s 2.5 w0 du this
casce, and the perturbatloa amplitude corcveapondingly twlee as lavge.
Figs. 32 and b show tlme sequenecs of dennlty contours from the
blow off layce and ablat fve drivea easea reapectively.  An important
difteronee s readlily seens The shell that dn delven by the
preswure of lower density patorial vithout thermal concuct lon (3a),
viileh fs ensentially the classteal Rayleiph-Taylor unstable sltuation,
shovs the fnatability coit hnue to grow past the seall anptitude
Tevel and break up the shell dnto fsolated reglons of waderate
donnity, The lows 1 denalty blow ofF layer material squlrty
Lot g Pheae Bbnher dews ity repiog, toeand the eenter of the spherleal

fepleston gy stea e can be meen o plota of the Cloe veloelty field



(uot shown).  This type of bhehavior vould constitote extrere dinrup! in:
of the inplosion aud vould precloade arhieving the high cospression

of fuel inuide of the shell which juectial couf fnewrnt fuslon requlres
for cconoical performmec.

The ablative driven case, Vi, 3h, shous seemivgly mach norc
stable belavior in splte of the fact that small auplitude eqaldulations
vitho the snell eaeplitude ctliad of Section IT above find instabiliny
grovth rates fur this ease with thernal conductlon and the above
blow off drlvea case without conduction very nearly the samz. hotice
that in spite of sorme perslstent ripples on the outside of, the shell,
tie highere density niddle of the shell dis esxentially laminar, in
contrast with the Isolated reglons of higher density seon above.

This laminar form would produce the type of essentially epherically
syactrle fmploslon desired. What has been eacountered in these two
dimenaional simulations of ablation is apparently a non-lincar
saturat Lon mechantism which is caused by lateral (parallel to the
surface) heat flow in the ablatlon regfon. This conjecture about
lateral heat flow 1s proaptaed by detalled exawmlnatlon of thu results,
whiuh show thiu. DbLvideatly this effect could be very lwportant for
lasier fusion., If so, trhe ablative system would be nuch better than
that drlvem by a blow of f layer. However, in the particnlar caue
shown heen the ablation rate Is on the high end ol the range of
tntereat. More thamn the few runs which have been made so far will
be nevded to map out the ranges ol physleal paraweters in which this

non-<1inear ablatfve atabilizat lon can be expected to vccur,
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Fig. ] These diagrams illustrate the way the livcarized perturbation
difference equations are derived by taking the dinit of moltldimensional
lagrangean difference cequations as the difference intervals in angle

nhout the spherical center go to zero and the angular varlation becones
_cnntinunus.(la) Tllustrates the limiting process in whiich the angular
di.cnslons of zones vanish while radial intervals remvin finite, (1b) Shows

and ?f . froa departures from

. . g [ ) r—
the origin of the angular forces fﬂl,j a1,

spherical symetry and from angular differences of pressures applicd to
radial pannels respectively. This sketch shows the disercet angular intcerval
sitvation before the continuous limit is taken . (1e¢) Showens the unomotrj

of the radial pannels on which angular pressure differences act. (1d)

Shows the geonmatry of the particular treatment that must be given to the

mass point at the spherical center when treating e == 1 pecturbations,
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Yig. 2 ‘the schematic arrangoeront of the eyliudricald grid of the PAL
code to treat a circular section of an inploling el i34 shown on  the
left. On the right are shown the initiszl conditions for the two different
modes of driviung the shell to dmplede. The upper figure shows the initizl
conditions for the mode ia which a lower density outer fluid at higher
pressure pushes the higher density shiell.  In this case there is no heat
flow. The lower figure shows initial conditions for a case run with °
clectron thermal corduction in which ablatioun pressure caused by absorbed

laser light cnergy drives the implosion.
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Fig. 3 Contours of density illustrating results of the two cases
vhose initial conditions are shon schematicly in fig. 2, Case T is
the crse without heat {low. ase 11 is the lasaer driven ablative case.
Note that the direction of wotlon in Z has been reversed From that
shown in fig. 2, ie., wotion is to the right in both cases here and
the laser is incident Irom the left in Ceaze 1I. In both cioses the
first frame shows initial runlitions and subscquent fraes poing down
show the iscdensity contours ai later tfmes. Note the sharp contrast
between case 1 in whick the shell ds broken into elearly isolated
regions of relatively high density and th~ ablative cazse I1 in which
the flow is almost laminar and the shell duteprity is essentially

prescrved,
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